fw2.2: a quantitative trait locus key to the evolution of tomato fruit size.

نویسندگان

  • A Frary
  • T C Nesbitt
  • S Grandillo
  • E Knaap
  • B Cong
  • J Liu
  • J Meller
  • R Elber
  • K B Alpert
  • S D Tanksley
چکیده

Domestication of many plants has correlated with dramatic increases in fruit size. In tomato, one quantitative trait locus (QTL), fw2.2, was responsible for a large step in this process. When transformed into large-fruited cultivars, a cosmid derived from the fw2.2 region of a small-fruited wild species reduced fruit size by the predicted amount and had the gene action expected for fw2.2. The cause of the QTL effect is a single gene, ORFX, that is expressed early in floral development, controls carpel cell number, and has a sequence suggesting structural similarity to the human oncogene c-H-ras p21. Alterations in fruit size, imparted by fw2.2 alleles, are most likely due to changes in regulation rather than in the sequence and structure of the encoded protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size.

It has been proposed that fw2.2 encodes a negative fruit-growth regulator that underlies natural fruit-size variation in tomato (Lycopersicon spp.) via heterochronic allelic variation of fw2.2 expression, rather than by variation in the structural protein itself. To further test the negative regulator and the transcriptional control hypotheses, a gene dosage series was constructed, which produc...

متن کامل

Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations.

fw2.2 is a major quantitative trait locus that accounts for as much as 30% of the difference in fruit size between wild and cultivated tomatoes. Evidence thus far indicates that fw2.2 alleles modulate fruit size through changes in gene regulation rather than in the FW2.2 protein itself. To investigate the nature of these regulatory changes and the manner in which they may affect fruit size, a p...

متن کامل

fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution.

fw2.2 is a quantitative trait locus responsible for approximately 30% of the difference in fruit size between large, domesticated tomatoes (Lycopersicon esculentum Mill.) and their small-fruited wild relatives. The gene underlying this quantitative trait locus was cloned recently and shown to be associated with altered cell division in ovaries (Frary et al., 2000). However, it was not known whe...

متن کامل

Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes.

Sequence variation was sampled in cultivated and related wild forms of tomato at fw2.2--a fruit weight QTL key to the evolution of domesticated tomatoes. Variation at fw2.2 was contrasted with variation at four other loci not involved in fruit weight determination. Several conclusions could be reached: (1) Fruit weight variation attributable to fw2.2 is not caused by variation in the FW2.2 prot...

متن کامل

Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom.

In an effort to determine the genetic basis of exceptionally large tomato fruits, QTL analysis was performed on a population derived from a cross between the wild species Lycopersicon pimpinellifolium (average fruit weight, 1 g) and the L. esculentum cultivar var. Giant Heirloom, which bears fruit in excess of 1000 g. QTL analysis revealed that the majority (67%) of phenotypic variation in frui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 289 5476  شماره 

صفحات  -

تاریخ انتشار 2000